Nonparametric Bayes Conditional Distribution Modeling With Variable Selection
نویسندگان
چکیده
منابع مشابه
Nonparametric Bayes Conditional Distribution Modeling With Variable Selection.
This article considers a methodology for flexibly characterizing the relationship between a response and multiple predictors. Goals are (1) to estimate the conditional response distribution addressing the distributional changes across the predictor space, and (2) to identify important predictors for the response distribution change both within local regions and globally. We first introduce the ...
متن کاملOptimal Bandwidth Selection for Nonparametric Conditional Distribution and Quantile Functions
Li & Racine (2008) consider the nonparametric estimation of conditional cumulative distribution functions (CDF) in the presence of discrete and continuous covariates along with the associated conditional quantile function. However, they did not propose an optimal data-driven method of bandwidth selection and left this important problem as an ‘open question’. In this paper we propose an automati...
متن کاملEmpirical Bayes vs. Fully Bayes Variable Selection
For the problem of variable selection for the normal linear model, fixed penalty selection criteria such as AIC, Cp, BIC and RIC correspond to the posterior modes of a hierarchical Bayes model for various fixed hyperparameter settings. Adaptive selection criteria obtained by empirical Bayes estimation of the hyperparameters have been shown by George and Foster [2000. Calibration and Empirical B...
متن کاملFeature Selection by Nonparametric Bayes Error Minimization
This paper presents an algorithmic framework for feature selection, which selects a subset of features by minimizing the nonparametric Bayes error. A set of existing algorithms as well as new ones can be derived naturally from this framework. For example, we show that the Relief algorithm greedily attempts to minimize the Bayes error estimated by k-Nearest-Neighbor method. This new interpretati...
متن کاملNonparametric Bayes Inference for Concave Distribution Functions
A way of making Bayesian inference for concave distribution functions is introduced. This is done by uniquely transforming a mixture of Dirichlet processes on the space of distribution functions to the space of concave distribution functions. The approach also gives a way of making Bayesian analysis of mul-tiplicatively censored data. We give a method for sampling from the posterior distributio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 2009
ISSN: 0162-1459,1537-274X
DOI: 10.1198/jasa.2009.tm08302